
0.1 Mathematical description of a camera — cameragen 1

0.1 Mathematical description of a camera — cameragen

The main purpose of this function is to convert natural, computer graphics oriented,
camera parameters to the parameters used in computer vision, mainly the 3× 4 camera
projection matrix P.

function [camera] = cameragen(pars)

Inputs:
pars a structure containing various description of a camera

.angle [radians] view angle of the camera, measured horizontally
.position [3× 1] vector containing position of the camera center expressed in

the world coordinate frame
.look_at [3× 1] point where the camera (its optical axis) is aiming

.sky = [0,−1, 0]> where the sky is
.width = 640 image width

.height = 480 image height
.aspect_ratio = 1 pix_width/pix_height

.foclen = 1 focal length not really necessary, it does not change the image
it changes the metric size of the image plane, consequently the pixel
dimensions see below camera.width_metric

.skew = 0, skew factor, if non-zero it means that rows and columns are
no longer perpendicular. In fact, most of the modern cameras have
no skew.

Outputs:
camera structure containing a complete description of the camera the input

structure is copied into it for completeness and beside this the
computer vision parameters are computed. Note that some of the
parameters are redundant and are provided for sake of completeness

.P [3× 4] camera projection matrix

.K [3 × 3] upper triangular matrix containing the intrinsic camera
parameters

.R [3× 3] rotation matrix

.t [3× 1] translation vector

.C [3× 1] position of the camera center expressed in the world coordi-
nate frame
note that P = K[Rt]

.width_metric width of the image in metric units
.pix_width pixel width in metric units

.pix_height pixel height in metric units

orientation of the camera plane (normal vector)

camera.dir = -(camera.C - pars.look_at)./norm(camera.C - pars.look_at);

azimuth and elevation of the camera center

[camera.az,camera.el,camera.dist] = ...
cart2sph(-camera.dir(1),-camera.dir(2),-camera.dir(3));

2

The composition of the camera rotation is perhaps the most complicated part of the
conversion. It is important to keep in mind that the positive z− axis goes from the
camera center towards the camera.look_at position. The image plane is perpendicular
to the axis and the intersection is the principal point First assume the orientation of the
camera coordinate system the same as the orientation of the world system.

1. Rotate around the z-axis (vertical axis) until it fixes the look_at point. This is called
panning.

R_pan = nfi2r([0,0,1],camera.az);

2. Then rotate around the y-axis to fix the horizontal elevation. This is called tilting.

R_tilt = nfi2r([0,1,0],-camera.el);

3. Rotation of the camera system itself. Remember that the z-axis of the camera
coordinate system directs towards the scene.

R_cam = nfi2r([1,0,0],-pi/2)*nfi2r([0,0,1],pi/2);

4. By default the camera is horizontally aligned with the xy plane of the world. In other
words the world horizon projects as perfectly horizontal line in the image. In camera
coordinate system it correponds to the (normalized) position of the sky at [0,−1, 0].
This default setting can be overriden by setting different pars.sky.

if all(camera.sky==[0,-1,0]’)
R_sky = eye(3);

else
if all(-camera.sky==[0,-1,0]’);

R_sky = nfi2r([0,0,1],pi);
else

rotaxis = cross(camera.sky,[0,-1,0]’);
rotangle = acos(camera.sky’*[0,-1,0]’);
R_sky = nfi2r(rotaxis,rotangle);

end
end
camera.R = R_sky*R_cam*R_tilt*R_pan;

The rest of the computation is rather straightforward

camera.t = -camera.R*camera.C;
camera.width_metric = 2*camera.foclen*tan(camera.angle/2);
camera.pix_width = camera.width_metric/camera.width;
camera.pix_height = (1/camera.aspect_ratio) * camera.pix_width;
% composition of the K matrix
camera.K = [camera.foclen/camera.pix_width, camera.skew, camera.width/2; ...

0, camera.foclen/camera.pix_height, camera.height/2; ...
0,0,1];

% and finally the 3x4 camera projection matrix
camera.P = camera.K *[camera.R, camera.t];

0.1 Mathematical description of a camera — cameragen 3

Figure 1: A generated 3D scene

4

Figure 2: 3D scene with cameras. The camera rises up and slightly rotates whilst keeping the
look_at fixed. You can observe how is the house becoming smaller with the increasing hight of
the camera position. For inserting cameras into a 3D plot, see showcams Section 0.1.1

0.1 Mathematical description of a camera — cameragen 5

0.1.1 Visualise a camera in a 3d plot — showcams

The main purpose is to draw a camera into a 3D sketch in a pleasant way. Camera center
is plot, as well as image plane with the actual image, corner points of the image plane
and lines that connect the corner points with the camera center The 3D sketch may then
require a manual adjustment of the viewpoint to get the most satisfactory results. The
rotation may be enabled by rotate3d or interactively, by clicking to the 3D rotate icon
on the figure window

function fig = showcams(fh,foclen,P1,im1,P2,im2, ...)

function fig = showcams(fh,foclen,P,im)

Inputs: Variable number of input parameters
fh figure handle of the 3D plot where the camera is to be drawn

foclen a focal lenght. However, it needs to be understood as not the true
one. It rather just control the visual appearance of the camera(s).
The true metric focal lenght cannot be estimated from the P matrix
only unless the metric size of the pixels is also provided. If a
negative value is specified, foclen=5 is set.

P1 [3× 4] camera projection matrix
im1 image of the P1 camera, it can be both grayscale and RGB

P2, im2 . . . more cameras, more images
The cameras and images may be also provided as cell arrays. P={P1,P2,P3,. . . } and
im={im1,im2,im3,. . . }.

See also: cameragen, P2KRtC

For all the specified cameras and images do the following:

• Decompose the P matrix into intrinsic and extrinsic parameters

[K,R,t,C] = P2KRtC(P);

• Back project the corner pixels into the scene

[r c d] = size(img);
U = [1,1; 1,r; c,r; c,1]’;
U(3,:) = 1;
X = pinv(P)*U; % back projection
X = X./repmat(X(end,:),4,1); X = X(1:3,:); % normalization

direction vectors from the camera center to the backprojected image corners.

dirvec = (X - repmat(C,1,length(X)));
dirvec = dirvec./repmat(sqrt(sum(dirvec.^2)),3,1);

• compute the coordinate of the image plane corners in the world coordinate system

X = dirvec*foclen + repmat(C,1,length(X));

6

• prepare the image for warping. Create the image plane from the backprojected corner
points. And finally, do the warp by employing the Matlab surface command.

if d==3
if i>1 % re-use the colormap

[imind,cmap] = rgb2ind(uint8(img),cmap);
else

[imind,cmap] = rgb2ind(uint8(img),256);
end

else
imind = uint8(img);
cmap{i} = colormap(gray(256));

end
for j=1:3,
implane(:,:,j) = [X(j,[1,4]);X(j,[2,3])];

end
surface(implane(:,:,1),implane(:,:,2),implane(:,:,3),imind, ...

’FaceColor’,’texturemap’,’EdgeColor’,’none’, ...
’CDataMapping’,’scaled’)

• At the end just plot the lines conecting the camera center with the corners of the
image plane and attach a label to the camera center.

for j=1:4,
line([C(1),X(1,j)],[C(2),X(2,j)],[C(3),X(3,j)])

end
plot3(C(1),C(2),C(3),’x’,’MarkerSize’, 10, ’LineWidth’,3);
text(C(1),C(2),C(3), sprintf(’ C_%d’,i), ’BackgroundColor’,’yellow’);

0.1 Mathematical description of a camera — cameragen 7

0.1.2 Conversion of rotation parameters — nfi2r

For a human is much more natural to define a 3D rotation in terms of axis rotation and
amount of rotation around it. Typical example may be: “rotate a camera around its
vertical axis for 90 degrees”. From the computational point of view is more convenient to
represent the rotation as 3× 3 matrix R. Then xrotated = Rx.

function R = nfi2r(n,fi)

Inputs:
n [3× 1] axis of rotation (vector of direction)

fi [rad] angle of rotation (counter clockwise)
Output: R [3× 3] rotation matrix

See also: The algorithm can be found in [?]

8

0.1.3 RQ matrix decomposition

function [R,Q] = rq(X)

Input: X input matrix
Outputs:
Q unitary matrix
R upper triangular matrix

See also: qr.

0.2 Homography estimation from point correspondences — DLT method u2Hdlt 9

0.2 Homography estimation from point correspondences
— DLT method u2Hdlt

function [H,T1,T2] = u2Hdlt(u1,u2,do_norm=1)

Linear estimation of homography from point correspondences with (optional) point
normalization
Input parameters:

u1,u2 [2|3×N] corresponding coordinates
do_norm do isotropic normalization of points? If not specified, = 1 is assumed.

= 0 do not normalization It may be useful when points are already
normalized it speeds up.

Output parameters:
H [3× 3] homography matrix

T1,T2 [3× 3] transformation matrices that did the proper normalization
See also: pointnorm, u2Fdlt

Compose the data matrix from point correspondences

u1 = u1’;
u2 = u2’;
A = [];
for i=1:size(u1,1),
A = [A; 0 0 0 -u2(i,3)*u1(i,:) u2(i,2)*u1(i,:); ...

u2(i,3)*u1(i,:) 0 0 0 -u2(i,1)*u1(i,:)];
end

Compute the solution by using SVD

[U,S,V] = svd(A);
H = reshape(V(:,end),3,3)’;

Undo the point normalization if applied

if do_norm
H = inv(T2)*H*T1;

end

0.2.1 Example of homography mapping

Generate an artifical scene. Two possible types: house is a 3D house and random2D makes
randomly generated co-planar points

scenetype = ’house’; % ’house’ ’random2D’;
[X,L] = scenegen(scenetype,10);
X(4,:) = 1;

Define two virtual cameras and project the 3D points to them. Compute the homography
mapping from selected points

10

Figure 3: Two projections of a planar scene. The corrsponding points used for homography
computation are red encircled. Because of the planarity, all points and their homography
projected counterparts exactly match. Compare to the non-planar scene scenarion, see Fig ??.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Two projections of the house scene. The corresponding points used for homography
computation are red encircled. The selected points lie on a 3D plane. However, points that do
not lie on this 3D plane where the corresponding points were taken are mapped incorrectly. This
phenomena is called out of plane parallax. Note also, that the top most point on the frontal
gable lies on the same plane as the corresponding points and this point is mapped correctly.

idxcorr = [1,2,3,4];
H = u2Hdlt(cam(1).u(:,idxcorr),cam(2).u(:,idxcorr));

Mapping from camera No. 1 to the camera No. 2, u2 = Hu1

u{2} = H*cam(1).u;

For a non-degenerate configuration the mapping is one to one, it means u1 = H−1u2.

u{1} = inv(H)*cam(2).u;

Normalize both the computed coordinates to get the pixel coordinates. Then, all the
points generated and computed are displayed by using the display2Dpoints function,
see Figures ?? and ??.

for i=1:2,
u{i} = u{i}./repmat(u{i}(3,:),3,1);

end;

0.2 Homography estimation from point correspondences — DLT method u2Hdlt 11

0.2.2 Isotropic point normalization — pointnorm

Normalization of point coordinates in order to achieve a better numerical stability of
direct linear tranform (DLT) estimation. See [?] for more details

function [u2,T] = pointnorm(u)

Inputs: u [3×N] matrix of the unnormalized coordinates of N points
Outputs:
u2 [3×N] normalized coordinates
T [3× 3] transformation matrix, u2 = Tu

See also: u2Fdlt, u2Hdlt

centering the coordinates

u2 = u;
u2(1:2,:) = u(1:2,:) - repmat(centroid,1,n);

scale them to have average radius of
√

2

scale = sqrt(2)/mean(sqrt(sum(u2(1:2,:).^2)));
u2(1:2,:) = scale*u2(1:2,:);

composition of the normalization matrix

T = diag([scale,scale,1]);
T(1:2,3) = -scale*centroid;

Example of pointnorm usage

The function pointnorm is used as follows:
Generate and display artificial 2D data

u = 100*rand(2,100);
u(3,:) = 1; % make the data homegeneous

figure(1)
plot(u(1,:),u(2,:),’+’)
hold on
title(’original points’)

Normalize points such that centroid of u2 will be [0, 0]>. u2 = Tu1

[u2,T] = pointnorm(u);
figure(2)
plot(u2(1,:),u2(2,:),’k+’,’MarkerSize’,10)
title(’normalized points’);

Control computation

u3 = inv(T)*u2;
figure(1)
plot(u(1,:),u(2,:),’ko’,’MarkerSize’,10)

12

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100
original points

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
normalized points

Figure 5: Left: original points (crosses) and re-computed points circles. Right: normalized
coordinates.

0.3 3D point recontruction — linear method — uP2Xdlt 13

0.3 3D point recontruction — linear method — uP2Xdlt

function X = uP2Xdlt(P1,u1,P2,u2, ...)

function X = uP2Xdlt(P,u)

Inputs:
P1,P2,...,PN [3× 4] N camera projection matrices
u1,u2,...,uN [3× n] homegeneous coordinates of n corresponding points

Outputs:
X [4× n] homogeneous coordinates of reconstructed 3D points

